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Geometry as we now understand it was first organized into a systematic
whole by Euclid, the great scholar of Alexandria, who wrote his Elements of
Geometry [7] around the year 300 B.C. According to the historian Howard Eves
[8], “No work, except The Bible, has been more widely used. . . .” The Elements
became a central pillar of western thought, studied by everyone seeking a broad
education for well over two millennia.

The launch of Sputnik in 1957 awakened an urgent concern that the United
States was being overtaken in science and mathematics by the Soviet Union.
Part of the response to this concern was the commissioning of the School Math-
ematics Study Group (SMSG), financed by the National Science Foundation
from 1958 to 1977, to create a reformed curriculum for school mathematics that
came to be known as the “New Math”. As it turned out, the SMSG decided not
to include Euclid’s axiomatic development of geometry in the New Math and it
has not since been a part of our high school geometry curriculum.

As an informal assessment of this change, I have asked a variety of educated
adults to tell me what they remember of high school geometry. Most of those
who had taken geometry prior to about 1975 lit up and told me how it stood out
for them as the time they realized that mathematics is not just about carefully
following rules. It is a system of thought in which they can figure out what is true
on their own, without needing to rely on books, teachers and other authorities.
For them high school geometry was truly memorable. Most of those who took
geometry after 1980 had little memory of the experience and could only tell me
that they had studied something about triangles and circles. I had to conclude
that, for them, it was of very little value.

From these testimonies it is clear to me that something important was lost
from Euclid’s geometry with the New Math curriculum. Since this change was
made we have seen a series of revisions and failures of our school mathematics
curricula. The Common Core State Standards were widely adopted, but states
are now, one by one, abandoning them.

I will argue here that we should retain the CCSS as guidelines for what
students need to learn from high school mathematics, but we must recognize
that these guidelines represent a drastic change from what has been taught in
geometry since 1980. As a result the present generation of teachers are largely
products of that system, and implementation of the CCSS for geometry cannot
be successful until our teachers themselves gain a modern mastery of the subject
that is consistent with these standards. This will require serious professional
development for current teachers, perhaps through programs like Math Circles,
and revised preparation of preservice teachers at colleges and universities.

I will give here four central goals for this revised preparation that are drawn
from the lessons of history. I will then examine the widely used systems of
geometry to show that no one of them meets all four goals. Finally I will
describe a new system that offers a means of resolving this ongoing dilemma.
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1. Axiomatic Development

In order to understand the importance of Euclid’s contribution, we must
ask ourselves why it was that, for so many centuries, Euclidean geometry was
viewed as an essential component of a sound education. Not just for aspiring
mathematicians, scientists and engineers, but for everyone. To answer this
question we need to go back in time and review the history of geometry.

Evidence of geometric principles are found in relics of the earliest civiliza-
tions that needed to construct structures that would stand and to measure fields
to grow their food. They date back as much as five thousand years to ancient
India, Babylon, Egypt and perhaps elsewhere. Prior to the classical Greek pe-
riod the facts of geometry were established by conducting experiments, making
conjectures and keeping those that seemed valid while discarding those that did
not.

An excellent example of such a “fact” was found on the famous Rhind Pa-
pyrus from Egypt, dated around 1650 B.C. This document includes a straight
edge and compass method to take a given circle and construct a square having
the same area. This method is believed to have originated with the Babyloni-
ans and to have continued in use for a number of centuries. The construction
is illustrated below. Starting at the center of the circle, construct two perpen-
dicular diameters. Then divide each diameter into nine congruent segments,
as illustrated by the nine circles on each. Finally construct a perpendicular
to each diameter at the centers of the two circles at either end. These four
perpendiculars form the required square.
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Babylonian method to square a circle.

A careful examination of this construction reveals that the area of the square
is very close to that of the circle, but just slightly bigger. This discrepancy was
well within the error tolerance of the needs of the time, and much too small to
be detected by the tools available. What is significant about this construction is
that it was part of a body of knowledge that was transmitted by citing recognized
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authorities rather than by giving a rationale as to why it was valid. Indeed, there
could be no rationale since the conclusion was in fact false. In this respect it
was typical of much of the mathematical knowledge of the time.

Euclid of Alexandria, 300 B.C.

The significance of Euclid’s Elements
lies not only in the practical value of the
geometric knowledge it provides, but more
importantly in its ability to establish that
knowledge without the need to cite any
external authority. Instead, Euclid presented
a small list of facts, called axioms, which he
asked his readers to experimentally verify
as thoroughly as they were able. By logical
reasoning, he then argued that an amazingly
complex collection of other facts could be
deduced from those axioms alone. Provided
the axioms were all true, we could have
full confidence that the conclusions drawn
from them were true as well.

This method of gaining reliable knowledge has had an enormous influence
on the development of Western thought. It was reflected and reinforced in
1687 when Isaac Newton published his Principia. In this three volume work
Newton laid out his laws of physics; a small set of axioms from which he deduced
the entire theory of classical mechanics while inventing the calculus along the
way. In a quite different domain, Thomas Jefferson justified the Declaration of
Independence by carefully laying out his assumptions and then deducing from
them their inevitable consequence.

“We hold these truths to be self-evident, that all men are created equal, that
they are endowed by their Creator with certain unalienable Rights,. . . ”

When Abraham Lincoln first ran for Congress, he took up a study of Euclid’s
Elements. In his famous 1859 debate with his rival Stephen Douglas over the
legitimacy of slavery, he cited Euclid’s central point:

“There are two ways of establishing a proposition. One is by trying to
demonstrate it upon reason, and the other is, to show that great men in
former times have thought so and so, and thus to pass it by the weight of
pure authority.”

He went on to admonish Judge Douglas to demonstrate the legitimacy of slavery
through a reasoned argument “as Euclid demonstrated his propositions,” rather
than to justify it by citing the authority of previous slave owners. Albert Ein-
stein’s relativity theory deduces a myriad of unintuitive facts from the single
axiom that the speed of light is not relative to the observer.

As the above examples show, Euclidean geometry offered an exact system
of assumptions and deductions that served as a model for less exacting areas
of study. Because of its historically demonstrated power to establish reliable
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truth without citing previously accepted authorities, the axiomatic method of
Euclid has been a central pillar of western thought for over two millennia. I will
therefore list it as a first goal for a geometry curriculum.

• Axiomatic Development. Present geometry through an axiomatic devel-
opment that begins with a small set of intuitive axioms from which the
entire subject is derived.

2. Guided Inquiry

In the early twentieth century, R. L. Moore at the University of Texas made
the observation that Euclid’s method could bring us even more. It is surely
an inspiration, he reasoned, to see how great thinkers like Newton, Jefferson,
Lincoln and Einstein could give us important new insights by following the
paradigm of Euclid. Moore’s observation was that, if teaching were done right,
we would not just be demonstrating that paradigm to our students. We would
be imparting it to them so that they could use it themselves.

For example, suppose students read Euclid’s proof that triangles with con-
gruent angles are similar, or it is presented to them in a lecture, and they follow
each line and agree that it is correct. They will then need to agree that the
conclusion is correct as well. But they may have no idea how the proof was
discovered, and they will probably not be able to reproduce it. In particular,
they will have no confidence that they could find a similar proof of a theorem
that they needed to prove themselves.

Robert L. Moore

Moore maintained that students receiving
their mathematics course work in this way
have been very poorly served. This kind of
demonstration that a theorem is true is, for
them, a small step beyond telling them that
it has been previously accepted by appropriate
authorities. If we want to give students access
to mathematical knowledge, we must find
ways to impart Euclid’s axiomatic method to
them as a skill that they can use to establish
knowledge themselves whenever they need it.
This skill would empower them with the ability
to determine what is and is not true well
beyond geometry, and even beyond
mathematics.

In 1905 Moore completed his PhD, writing a dissertation on the axioms of
plane geometry. In his own teaching in Texas he sought to eliminate traditional
lectures and put students in charge of doing and presenting the work. Using
what became known as the Moore Method, he provided his students with defini-
tions and axioms, together with problems to solve and theorems to prove, and
left it to them solve the problems and prove the theorems on their own. Class
time was primarily spent with individual students presenting their work with
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him as a moderator and guide. For an excellent account of the use of the Moore
Method see the Coppin, Mahavier, May and Parker [5]. Over time Moore, his
colleagues, his PhD students and his collective 1,678 descendants [18] have mod-
ified his method to adopt it to the wide range of learning environments we have
today.

A similar line of development has happened in other places and other dis-
ciplines. The common insight is that the proper role of a teacher is not to
demonstrate his or her ability to use the methods of the discipline to gain
knowledge, but rather to impart those methods to the students. This is done by
eliminating lectures and using class time to engage the students in some form
of active learning. In the 1970s Clarence Stephens at SUNY Potsdam created
in this way the “Potsdam Miracle” in which as much as 10% of the students at
this small liberal arts school were graduating with a degree in mathematics [20].
Nobel laureate Carl Wieman spent years developing a form of active learning for
large sections of physics [6]. David Hanson founded the NSF funded and widely
used program POGIL (Process Oriented Guided Inquiry Learning) for teach-
ing chemistry with students actively working in small groups. Paulo Freire’s
1968 book Pedagogy of the Oppressed [10] has led to the growing movement
toward active learning in the social sciences, referred to as “critical pedagogy”.
In mathematics active learning is called “inquiry-based learning” or “guided
inquiry learning”. The “Moore Method” is the form of guided inquiry learning
generally used in more advanced university courses.

In recent years there has been a growing consensus in the educational re-
search community, and particularly within the STEM disciplines, around the
value of active learning pedagogies. A 2014 article in the Proceedings of the
National Academy of Sciences [9] reported on a metastudy of 225 studies of the
relative benefits to students of lecture and active learning courses. Based on
the statistical data they found, they concluded that the case in favor of active
learning over lecture was so strong that, had these been medical studies reveal-
ing the same statistics, many of them would have qualified for being “stopped
for benefit”. That is, it would have be suggested to halt the study in order to
avoid withholding the trial treatment (active learning) from the control group
(lecture).

A three year study of guided inquiry learning in mathematics was headed
by Sandra Laursen as her group witnessed it practiced by the Universities of
California at Santa Barbara, Chicago, Michigan and Texas. They concluded
that it “benefited students in multiple, profound, and perhaps lasting ways.
Learning gains and attitudinal changes were especially positive for groups that
are often under-served by traditional lecture-based approaches, including women
and lower-achieving students.” [16] and that “Evidence for increased persistence
is seen among the high-achieving students . . . ” [15]

Students working themselves through the logical development of Euclidean
geometry discovered how conclusions follow from given information, a skill they
would need in all walks of life. It fostered the growth of critical thinking,
an attribute required of the citizens of any functioning democracy. For these
reasons I have added guided inquiry as a second goal for a college geometry
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curriculum.

• Guided Inquiry. Provide a presentation with minimal explanations and
proofs that leads students to solve problems and prove theorems on their
own while the instructor serves as a mentor and a guide.

3. Problems with Euclid

As mathematics began to mature after the Renaissance, mathematicians
looked more carefully at Euclid’s development and discovered that it failed to
meet his stated objectives in three ways - each of which required fundamentally
new advances in mathematics in order to rectify.

First, the proofs of his theorems contained hidden assumptions that were
not explicitly stated in his axioms. For centuries mathematicians attempted to
resolve this problem by filling in the missing assumptions. This proved to be
a devilishly difficult task, as it was unclear exactly what constituted a correct
mathematical proof and what we already knew about physical space that we
could use to create a theory describing it. Examples of this fall into three
categories: incidence, betweenness and intersections. Here is an example of
each. We write “[XY Z]” to mean point Y is between points X and Z.

Incidence: Not all points lie on (are incident to) one line.

Betweenness: If [ABC] and [ACD], then [ABD].

Intersections: A line containing a point inside a circle intersects that circle.

Euclid made many similar unstated assumptions in each of these categories.
The question was this. Are these facts about physical space that we already
know, or do they need to be proven? Mathematicians began to argue that we
needed to prove them by finding clever proofs of absurd conclusions (like all
triangles are isosceles) obtained by ignoring these issues.

Secondly, there was general agreement that Euclid’s axioms themselves were
assertions that we know to be true from experimental evidence with one excep-
tion. This was Euclid’s Parallel Postulate: For every line ` and point P not on
`, there is at most one line containing P that is parallel to `. Euclid himself was
conservative in the use of this axiom, which he avoided as long as possible. For
centuries mathematicians attempted to justify the Parallel Postulate by proving
it from Euclid’s other axioms, but these efforts remained fruitless.

Finally “geometry”, from “earth measure” in Greek, was intended to re-
fer to a system of numerical measurement of physical objects. Yet the early
Greeks had access to only the rational number system, and had no effective
means to describe the area or volume of an irregular shape. They knew from
Pythagoras’s theorem that there were many segments that did not have a ratio-
nal length. This fact led Euclid to favor an axiomatic formulation of geometry
over a numerical formulation. The later books of the Elements illustrate Eu-
clid’s awkward struggle with segments whose lengths are not in a rational ratio.
These shortcomings of Euclid point to a third goal for a geometry curriculum.
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• Mathematical Foundations. While we may not include the full mathemat-
ical foundations in the curriculum itself, they should be understood and
available to the instructors who teach it.

The late nineteenth century saw a number of fundamental advances in math-
ematics that finally led to an understanding of these foundations. Boole, Frege
and others began to clarify and formalize set theory and logic, which underly all
of mathematics and help to delineate what constitutes a mathematical proof.
Beltrami, Klein and Poincaré finally demonstrated that the desired proof of the
Parallel Postulate was impossible if Euclidean geometry was consistent. They
did this by showing that any model of Euclidean geometry could be used to
construct a model of non-Euclidean geometry, that is, a model satisfying all of
Euclid’s axioms except the parallel axiom.

Subsequently Dedekind (1872) discovered the real number continuum, and
showed that the resulting Cartesian coordinate plane was now indeed a model
of Euclid’s axioms. This model gave rise, via the work of Beltrami, Klein and
Poincaré, to models of non-Euclidean geometry as well. Both were revealed to be
fully valid mathematical systems. Altogether these discoveries showed that the
truth or falsity of the Parallel Postulate is not a mathematical question at all.
It is an empirical question about the nature of physical space – a question that
was not answered until the early twenty first century. Working in a different
direction Riemann, Jordan and Lebegue developed a theory of measure that
made it possible to specify which regions could be assigned an area or a volume
and to describe methods to compute them.

4. Hilbert’s Geometry

David Hilbert

Drawing on these foundational advances
in mathematics, the German mathematician
David Hilbert first resolved the problems of
Euclid’s system in his 1899 Grundlagen der
Geometrie [13]. This work provided a new
system of axioms for plane geometry from
which followed all of the necessary
foundational facts and theorems together
with a full theory of measurement of lengths,
areas and angles. From Hilbert’s now
standard view of geometry, “point”, “line”,
“between” and “congruent” are taken to be
primitive (undefined) terms. They only
acquire a meaning in a particular model of
geometry, such as physical space or the
Cartesian coordinate plane. Euclid’s
unstated assumptions about incidence and
betweenness were fully justified by several new axioms. Adding Dedekind’s
completeness axiom allowed Hilbert to justify Euclid’s unstated assumptions
about intersections.
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Hilbert’s system was quickly recognized by professional mathematicians as
a fully satisfactory Mathematical Foundation for plane geometry. The first of
many fine expositions of Hilbert’s system was George Halsted’s 1904 text Ratio-
nal Geometry: A Text-Book for the Science of Space [12]. Colleges and univer-
sities adopted Hilbert’s system as a prototype of modern mathematics, thereby
fulfilling our Axiomatic goal. Moore developed his own version of Hilbert’s ax-
ioms that has been widely used by his descendants for a Guided Inquiry course.

High schools had a quite different response to Hilbert’s geometry. It took
considerable time after the publication of Hilbert’s work for the problems with
Euclid to be fully recognized at the high school level. The 1913 edition of the
widely used Plane and Solid Geometry by G. Wentworth and D.E. Smith [21]
still adhered to the gentler approach of Euclid and made no attempt to incor-
porate Hilbert’s system. In the preface of the 1960 geometry text of Brumfiel,
Eicholz and Shanks [2], the authors refer to Hilbert’s rectification of the omis-
sions in Euclid:

“Means to remedy these gaps have been known for about sixty years, but
strangely enough a mathematically adequate and yet elementary treatment
of plane geometry in the spirit of Euclid has not appeared in print. This
text represents an earnest effort to do just this.”

Subsequent experience showed that this text erred on the side of “mathemat-
ically adequate” rather than “elementary”, and found a very limited following
at the high school level. As educators became fully aware of the abstract and
sophisticated nature of Hilbert’s system, they agreed that it was not appropriate
for a high school audience and continued to use Euclid.

5. Birkhoff’s Geometry

George Birkhoff

In 1932 George Birkhoff published a
quite different revision of plane geometry
that he intended as a replacement for
Euclid in the high schools [1]. To do this
he drew on Dedekind’s description of the
real number continuum with two new
axioms. The ruler axiom said that every
line was order isomorphic to the real
number line. The protractor axiom said
that the angles off one side of a ray are
order isomorphic to the real numbers
between 0 and 180. From these two
powerful axioms, together with a number
of standard axioms, plane geometry
smoothly flowed. The two new axioms
drew on prior knowledge of the number
system to gain ready access to the facts
of geometry without the extended efforts
required by Hilbert. For example, Hilbert’s definition of a right angle as an
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angle congruent to its supplement requires an extended effort to prove that all
right angles are congruent. In contrast, this follows immediately from Birkhoff’s
definition of a right angle as an angle with measure 90◦.

It was not until the launch of Sputnik in 1957 that American educators acted
on Birkhoff’s proposal. The high school geometry component of the SMSG’s
New Math program finally dropped Euclid’s formulation of plane geometry and
adopted Birkhoff’s system in its place. To this day, a version of Birkhoff’s axioms
has remained the backbone of high school geometry in the US and beyond.

6. Geometry in Turmoil

Hilbert and Birkhoff each offered a system of axioms from which they could
prove all of Euclid’s theorems and unstated assumptions, thereby fulfilling the
Foundations goal. However, as we will see, neither Euclid, Hilbert nor Birkhoff
provided the basic needs of a geometry curriculum for either high schools or
universities.

As described above, Euclid’s attempt to build an Axiomatic Development
of geometry was his great contribution to western thought. It fell short of the
Foundations goal only because it required foundational parts of mathematics
that were not discovered until much later. In spite of these omissions, Euclid’s
geometry was a key inspiration for many people up to the late 1970s. It pro-
vided the content we still look for in geometry today, including congruence,
area measure, angle measure, similarity and properties of circles. It fulfilled the
Guided Inquiry goal as the forerunner of modern guided inquiry learning. And
it certainly served to awaken my own interest in mathematics, as a tenth grade
geometry student in 1962, despite its shortcomings.

As we have seen, Hilbert’s geometry is too advanced for high school stu-
dents. At the university level it nicely fulfills the Axiomatic and Guided Inquiry
goals. From his small set of elegantly parsimonious axioms all of the necessary
foundational facts can be proven. But a rigorous development of axiomatic ge-
ometry from Hilbert’s axioms is a lengthy and sophisticated process requiring
considerable time and a serious commitment to abstract mathematics. This
rigorous detail comes with a price because university students can not normally
devote more than one semester to geometry. The time required means that
a one semester Hilbert geometry course will miss many of the topics that are
standard parts of the high school curriculum.

Unfortunately the use of Euclid in high schools and Hilbert in colleges has
led to a serious conflict. Geometry is particularly important for university stu-
dents preparing for K-12 teaching who typically make up a sizable portion of
university enrollments in geometry. Felix Klein complained that these students
were being subjected to a cruel “double discontinuity” in which there was prac-
tically no connection between the range of topics they learned and later taught
in high school and the geometry of Hilbert they studied while at the university.
In his article, “The Mis-Education of Mathematics Teachers” [22], Wu likened
this situation to one in which we prepare pre-service French teachers by teach-
ing them Latin at the university and then asking them to make the necessary
adjustments when their own students arrive to learn French.
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The point Klein and Wu both made is that, before we do anything else, our
primary obligation to pre-service teachers is to provide them with a deep and
thorough knowledge of the topics they will actually need to teach. This is surely
sound advice for every discipline, and I have added it here as a final goal for a
successful university geometry course.

• Standard Content. Give university students an in depth understanding of
the standard topics that are taught in high school geometry.

The teaching of Euclid’s geometry in high school while teaching Hilbert’s ge-
ometry at universities was an example of a serious violation of this Content
requirement that challenged us to find other options.

Since Euclid’s geometry was abandoned in our schools, high school geom-
etry has had recurrent difficulties. Varying policies for handling it have been
tried and then met with frustration over this period, so far without any broad
agreement as to what should be done. But there are two fundamental features
of these policies that have not changed during this time. It is my belief that
the real problem lies with those two features, and that a satisfactory resolution
will not come without freeing ourselves of both.

The first feature is the high stakes exams and their consequences. This
concern applies not only to geometry, but to most school subjects. We have seen
growing pressure for accountability of our schools. The idea is that educators
should get together and say in advance what they expect students to be able
to do as a result of being taught and how they will document students’ ability
to meet those expectations. This documentation is normally acquired through
state administered exams. Superficially the request for this documentation from
the tax payers who finance public education seems reasonable.

The difficulty with this request is that there is a very poor correlation
between what is important for students to learn and what can be
reliably assessed on a state exam. As the stakes get higher, educators
are pressed to shift what they teach away from what students need most to
learn in favor of what is more readily documented on an exam. In geometry we
would like our students to be able to think creatively, solve problems and prove
theorems on their own, and effectively articulate their results. But these skills
are not easy to assess on large scale exams. Much easier to assess is content
knowledge of piecemeal facts and procedures that are of much less value to the
students. Ultimately this discrepancy brings us to a choice between

(i) teaching what students need most to learn and assessing their knowledge
as best we can, or

(ii) teaching what we can most readily assess and slanting its content toward
student needs as best we can.

As is the case with many other subjects, we have in geometry chosen (ii) over (i).
I support the Common Core State Standards as a promising effort to implement
(i) in place of (ii). As I see it the problem with the CCSS is not the standards
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themselves, but rather the unrealistic requirement that their long term benefits
be assessed with a state exam. (See James Loewen’s similar analysis of the
teaching of history [17].)

The second feature of high school geometry that has not changed in the past
thirty five years is Birkhoff’s axiom system. The “advantage” of this system is
that the powerful ruler and protractor axioms give high school students quick
access to the many facts of geometry. But in practice this has made it ide-
ally suited for the current data intensive curriculum that efficient assessment
demands. Furthermore this quick access comes at cost of a serious additional
liability.

Birkhoff’s premise was that students could avoid the lengthy task of build-
ing geometry from Hilbert’s parsimonious axioms by drawing on their prior
knowledge of the real number system. However, we must ask, just what prior
knowledge of the real number system does a young high school student have?
The real number continuum is a complex system that took centuries to fully
understand, and is normally studied in upper division real analysis courses at a
university. As such it is well beyond anything that can be viewed as prior knowl-
edge of high school students. Indeed it is hard to see that high school students
understand anything about the real numbers beyond their prior knowledge of
the rational numbers. The existence of a number representing the length of the
diagonal of a unit square or the ratio of circumference to diameter of a circle
can only be justified by the authority of their book or their teacher.

The extent to which Birkhoff’s geometry depends on the real number system
is hard to over estimate. Imagine we have a plane that satisfies Birkhoff’s
axioms. Choose any line in that plane, and coordinatize it using the Ruler
Axiom. Now take a second line that is perpendicular to the first, intersecting
the first at 0. Coordinatize the second line with 0 at the intersection. Given
real numbers x and y, we can construct a perpendicular to the first line at the
point with coordinate x and to the second at the point with coordinate y. The
parallel axiom says that these two perpendiculars will cross at some point P .
To P we can assign the coordinates (x, y). It quickly follows at the outset that
our plane is isomorphic to the coordinate plane R2. Consequently Birkhoff’s
geometry is easily seen to reduce to a study of coordinate geometry.

This conclusion about Birkhoff’s geometry is not just an abstract fact. It has
had a very significant impact on high school geometry from the time the program
was first introduced. The transition to Birkhoff geometry saw the name of the
course change from “Geometry” to “Integrated Mathematics”. Since there was
only one model of the axioms, the axioms themselves had limited relevance.
The one model R2 could be studied by combining geometry and algebra as a
single course sequence. When properties of the real numbers were needed, they
were declared to be true by fiat. Immersing students in a concurrent study of
algebra, a subject new to them as well, left them even more dependent on books,
teachers and calculators to know what was true. For example, they can offer no
evidence whatsoever that the properties of numbers, like the distributive law,
hold beyond the rational numbers.
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Birkhoff’s geometry does cover the Content of high school geometry, as it
gives ready access to the required facts. But it fails the Axiomatic goal because,
in practice, the role of the axioms is barely visible to students. It also fails the
Guided Inquiry goal by relying so heavily on unsubstantiated facts about real
numbers. Altogether it begs the question as to why we teach geometry at all.

The accompanying summary table shows which of the four goals are met
by each of the three historically used plane geometry curricula. As we see,
it confronts us with a compelling dilemma. How do we construct a geometry
curriculum that will provide an axiomatic setting for guided inquiry learning
(as Birkhoff could not do), supply a sound mathematical foundation (as Euclid
could not do) and at the same time cover the standard topics of plane geometry
(as Hilbert could not do)?

Summary Table Euclid Hilbert Birkhoff

Axiomatic Development

Guided Inquiry Learning

Mathematical Foundations

Standard Content

∗
∗

∗
∗
∗ ∗

∗ ∗

7. Resolution

After years of teaching Hilbert’s geometry [3] to prospective teachers, a point
came when I suddenly discovered that they were no longer getting an axiomatic
development of Euclid’s geometry in high school. This explained their difficulty
with Hilbert, and brought home to me Klein’s double discontinuity. Determined
to find a better alternative for them, I obtained a grant from the Educational
Advancement Foundation to write the text [4] that would reach the four goals
I have described. In this section I will outline the strategy I used to do this.

As is normally done, I assume foundational knowledge of naive set theory and
logic without mentioning it explicitly. Students use the logic and properties of
sets that seem right to them, and instructors or other students raise discussion
about anything that seems questionable. These practices are common place
in mathematics classrooms and have functioned well for a long time. To this
naive foundational knowledge of set theory and logic, I add the following three
foundational principles. My intention is that these principles be handled just as
the the principles of naive set theory and logic are handled. (See Appendix C
of [4] for a list of Hilbert’s axioms, and any text that uses them, such as [3], [11]
or [14], for consequences of Axioms 1 to 7.)

Incidence. Consequences of Hilbert’s Axioms 1, 2 and 3 can be used.

Betweenness. Consequences of Hilbert’s Axioms 4, 5, 6 and 7 can be used.

Intersections. Intersections which appear to always exist can be used.
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Multiple pilot tests of this text by many instructors have shown this strategy
to be very effective. Students will make informal use of these foundational
principles as they make of naive set theory and logic. If a question ever arises,
we state the relevant principle explicitly and reassure them that they can use
it. Not needing to establish or cite these principles as part of the axiomatic
structure saves a great deal of time, time that can be spent covering the required
content. A brief look at the table of contents of [4] shows that it does indeed
satisfy the Content goal, covering the standard topics of synthetic geometry as
outlined in the Common Core State Standards.

The text [4] is written in a Guided Inquiry format. It includes neither proofs
of theorems nor worked examples. Instead, it consists of only the necessary ex-
planations and definitions together with a carefully designed sequence of prob-
lems and theorems that are to be solved and proven by the students. They are
organized in gentle but challenging steps, starting with a small set of axioms,
so that each item can be done by drawing on what came before it. As a guided
inquiry study, I have minimized what I ask students to accept on my authority.
There are 200 problems and theorems listed, 197 for the students to do on their
own. The remaining 3 are theorems whose proofs require arguments that would
be a bit of a digression to include. They are instead presented without proof:
the Rectangle Area Theorem, the Scaling Theorem and the Theorem Pi. For
each of these 3 the students will prove approximating cases to get a sense of
why they might be true.

I use Axiomatic Development based on ten axioms, each presented in the
text at the point that it is first needed. Axioms 2, 3 and 5 are familiar: SSS,
SAS and the Euclidean Parallel Axiom. A very weak but essential Axiom 4 says
that if a ray emanates from the vertex of an angle and is otherwise interior to the
angle, then that angle is not congruent to either of the two smaller angles formed
by the ray. Axiom 8, saying that dilations preserve betweenness, leads to the
standard theorems about triangle similarity. The remaining three axioms about
plane geometry, Axioms 1, 6 and 7, all use a similar format to describe measure:
length measure, area measure and angle measure. In the last chapter Axioms
9 and 10 on solid geometry lead to the well known principles of perspective
drawing. Experience has shown that these axioms are all fully understandable
for students and are consistent with their beliefs about physical space.

It is not at all apparent from [4] itself that it satisfies the Foundations goal.
To fulfill this goal we need a mathematical basis for the foundational principles
and for the three unproven theorems, as was not available to Euclid. For the
Incidence and Betweenness Principles, the cited axioms of Hilbert give us this.
The remainder has been provided by Samrat Pathania in [19]. He restates the
Intersections Principle as the consequences of a small set of axioms asserting the
existence of specific intersections. He then shows that the results of [4] can all
be proven with these additional axioms, including the Rectangle Area Theorem,
Scaling Theorem and Theorem Pi.
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8. Conclusion

High school mathematics has three primary themes: algebra, functions and
geometry. Under these themes students acquire essential tools to understand
any of the vast range of quantitative components of the modern world. Today
many career directions depend in an essential way on a mastery of these tools.

High school algebra is about the algebra of the real numbers. Functions
studied in high school are functions from real numbers to real numbers. As we
have observed here, high school students have very limited knowledge of the real
number system. From prior years they have a sound knowledge of the rational
number system, but knowledge of the real numbers beyond the rationals comes
from real analysis – an advanced university subject available only to those ma-
joring in mathematics. For high school students, knowledge of the real number
system must necessarily be transmitted through the authority of teachers and
textbooks. There is simply no alternative. This means that the goals of un-
derstanding an Axiomatic Development and constructing mathematics through
Guided Inquiry are inherently limited in a high school study of algebra and
functions.

This shows us why the study of geometry in high school was always viewed
as so essential in the past. It was the one remaining opportunity to meet these
two goals at the high school level. The replacement of Euclid’s geometry with
Birkhoff’s geometry squandered this opportunity, as Birkhoff’s geometry de-
pends on the real number system just as much as high school algebra and func-
tions do. My central point is that it is now time to correct this error.

It is my hope that the text [4] will bring many students a recognition that
they have the ability to solve problems and prove theorems on their own, without
needing to cite authorities. I hope that teachers will get from it a better idea of
what mathematics is about and why we need them to teach it. And perhaps,
some day, the formulation of geometry presented in [4] will find its way, through
some appropriate reformulation, into our high schools so that students will no
longer wonder why they are being told to study geometry.
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